Схема котельной: принципиальная тепловая

Схема котельной: принципиальная тепловая

Описание принципиальной тепловой схемы отопительно-производственной котельной с паровыми котлами

На рисунке 1 приведена принципиальная тепловая схема производственно-отопительной котельной для закрытой системы теплоснабжения.

Тепловая схема включает в себя паровой котел (1), вырабатывающий сухой насыщенный или перегретый пар.

Перегрев может потребоваться для обеспечения подачи промышленному потребителю сухого насыщенного пара, если дальность такова, что за счёт тепловых потерь температура перегретого пара снизится на величину первоначального его перегрева.

Пар после котла через редукционно-охладительную установку (13) поступает на элементы тепловой схемы и к потребителю (6) технологического пара.

Давление пара вырабатываемого котлами выше давления пара отпускаемого промышленным потребителям и выше допустимого давления пара в корпусах подогревателей сетевой воды, поэтому в тепловую схему введена редукционно-охладительная установка.

У промышленного потребителя от пара отбирается необходимое количество тепловой энергии, а образовавшийся конденсата частично возвращается в котельную и поступает в атмосферный деаэратор (9).

Рис. 1. Принципиальная схема отопительно-производственной котельной с паровыми котлами для закрытой системы теплоснабжения: 1 – котел; 2 – расширитель (сепаратор) непрерывной продувки; 3 – питательный насос; 4 – подогреватель сырой воды;
5 – химводоочистка (ХВО); 6 – потребитель технологического пара; 7 – насос для подпитки тепловых сетей; 8 – подогреватель сетевой воды; 9 – атмосферный деаэратор;
10 – охладитель выпара из деаэратора; 11 – сетевой насос; 12 – регулирующий клапан;
13 – редукционный клапан; 14 – потребитель, использующий тепло на нужды отопления, вентиляции и горячего водоснабжения; 15 – пароперегреватель

Деаэратор служит для удаления из воды растворенных в ней газов, в первую очередь кислорода перед тем, как она поступит в паровой котел или на подпитку тепловой сети. В котельной имеют место потери (утечки) теплоносителя – пара и воды, имеют место утечки также в тепловых сетях и у промышленного потребителя пара.

Для восполнения этих потерь используется техническая вода, которая в котельной сначала подогревается в поверхностном подогревателе (4) до температуры 25-30 0 С, а затем направляется на химводоочистку (ХВО) (5). Химводоочистка служит для приготовления воды определённого качества по жесткости. Эта величина определена нормами качества питательной воды паровых котлов, установленных в котельной.

Затем химочищенная вода подогревается в охладителе выпара деаэратора (10) и направляется в деаэратор (9), если нагрев не обеспечивается до температуры 85-90 0 С, то дополнительно между охладителем выпара и деаэратором необходимо установить поверхностный пароводяной подогреватель.

Система теплоснабжения котельной включает в себя: не менее двух сетевых подогревателя поверхностного типа (8), сетевые насосы (11) и подпиточные насосы (7). Нагретая в подогревателях (8) сетевая вода по подающему трубопроводу поступает к потребителю (14), использующему тепло на нужды отопления, вентиляции и горячего водоснабжения. По обратному трубопроводу охлаждённая сетевая вода возвращается в котельную и поступает на всас сетевых насосов (11). Утечки сетевой воды в тепловой сети восполняются деаэрированной подпиточной водой с помощью подпиточных насосов (7).

При работе паровых котлов концентрация солей в котловой воде не должна превышать определённой величины, гарантирующей требуемую чистоту пара при заданных параметрах работы теплогенерирующей установки.

Для поддержания такой концентрации используется непрерывная продувка котла из верхнего барабана. Вода непрерывной продувки имеет высокий энергетический потенциал, так как её температура соответствует температуре насыщения при давлении в барабане котла. Поэтому в котельных обычно это тепло частично используется в тепловом цикле перед сбросом продувочной воды в канализацию.

Непрерывная продувка парового котла направляется сначала в расширитель (сепаратор) непрерывной продувки (2). В сепараторе (2) поддерживается давление немного выше давления в атмосферном деаэраторе (9). При этом давлении часть продувочной воды вскипает, образуется вторичный пар, который направляется в деаэратор, а оставшаяся часть продувочной воды направляется в поверхностный подогреватель исходной технической воды, где охлаждается до температуры 40 0 С и затем сбрасывается в канализацию.

Атмосферный термический деаэратор (9) представляет собой подогреватель смешивающего типа. В нем поступающие в него потоки химически очищенной воды и возвратного конденсата нагреваются до температуры насыщения вторичным паром из сепаратора непрерывной продувки (2) и паром из паропровода после редукционно-охладительной установки поступающего в деаэратор через регулирующий клапан (12). При температуре насыщения растворимость газов в воде равна нулю, поэтому растворенные в ней газы выделяются из воды и удаляются из головки деаэратора через штуцер в охладитель выпара (10).

Восполнение потерь пара и конденсата в котельной и у промышленного потребителя осуществляется деаэрированной в деаэраторе (9) водой, которая питательным насосом (3) подаётся в паровой котёл (1).

Не нашли то, что искали? Воспользуйтесь поиском:

Типы и принципиальные схемы котельных

В городах для ТС применяются крупные районные котельные с тепловой нагрузкой 116 – 812 МВт, квартальные и групповые с нагрузкой 17,4 – 116 МВт, а также мелкие и местные котельные с нагрузкой до 17,4 МВт.

Крупные котельные характеризуются меньшими удельными капитальными затратами и более эффективным использованием топлива, поэтому в настоящее время стремятся строить в основном крупные районные котельные, отпускающие теплоту одновременно для жилищно-коммунального сектора (ЖКС) и для промышленных объектов.

Квартальные, групповые, мелкие и местные котельные, используемые как в секторе промышленности, так и в ЖКС, сооружаются в основном вследствие разновременности и поэтапности строительства различных объектов.

Для теплоснабжения сельских и небольших рабочих поселков находят применение поселковые котельные мощностью до 12 МВт и децентрализованные домовые (местные) и поквартирные источники теплоты. Поселковые котельные обычно снабжают теплотой по централизованным с-мам центральную часть поселков, состоящую из многоквартирных секционных и общественных зданий, и производственные зоны; децентрализованные источники теплоты – расположенные на периферии малоквартирные и отдельно стоящие здания.

В зависимости от вида теплоносителя котельные подразделяются на водогрейные, паровые и пароводогрейные.

Водогрейные котельные оборудуются стальными или чугунными водогрейными котлами, вырабатывающими горячую воду, и предназначены для обеспечения в основном жилищно-коммунальных тепловых нагрузок: отопления, вентиляции и горячего ВС.

В современных крупных с-мах ТС применяются стальные водогрейные котлы, рассчитанные на давление до 2,2 МПа и темп-ру нагрева воды до 180°С. Чугунные и некоторые типы стальных водогрейных котлов, рассчитанные на давление до 0,6 МПа и темп-ру нагрева воды до 95 – 150 0 C, применяются в индивидуальных домовых котельных и для мелких с-м ТС, например в сельских поселках.

Читать еще:  Сатиновый потолок: какой лучше

Принципиальная схема котельной со стальными водогрейными котлами при двухтрубной тепловой сети показана на рис. 11.3.

В водогрейных котлах 1 в результате сжигания топлива производится подогрев воды до требуемой для ТС темп-ры (например, 150°С). Часть нагретой в котлах воды с помощью рециркуляционных насосов 2 подается в обратную линию перед котлами. Рециркуляция необходима для подогрева воды на входе в стальные котлы до темп-р выше темп-р точки росы, значения которых зависят от вида топлива, а также для поддержания постоянного расхода воды через котлы. При темп-рах воды на входе в стальные котлы ниже темп-р точки росы происходят конденсация водяных паров из газов, образование отложений и сернистая коррозия поверхностей нагрева, а при снижении расхода воды более чем на 20% – неравномерное распределение воды в греющих трубках котла, приводящее к вскипанию воды и локальным пережогам трубок. Для устранения коррозии минимальная температура воды на входе принимается: при сжигании газа – примерно 70°С, при сжигании мазута – 110°С.

Основная часть нагретой в котлах воды поступает в подающую магистраль теплосети. Для снижения темп-ры воды в подающей магистрали в соответствии с применяемым качественным методом регулирования тепловой нагрузки производится подмешивание холодной воды из обратной магистрали по перемычке 4. Количество подмешиваемой воды регулируется клапаном 5 в зависимости от величины тепловой нагрузки.

Циркуляция воды в теплосети производится сетевым насосом 6, на всасывание которого с помощью подпиточного насоса 8 подается подпиточная вода после химводоочистки 7.

Рис 11.3. Принципиальная схема котельной со стальными водогрейными котлами при двухтрубной тепловой сети

1 – котлы, 2 – рециркуляционный насос 3 – регулирующий клапан, 4 – перемычка из обратной линии в подающую; 5 – регулирующий клапан, 6 – сетевой насос, 7 – аппараты химводоочистки.

При использовании мазута в качестве основного или резервного топлива в водогрейных котельных иногда дополнительно устанавливают вспомогательные паровые котлы небольшой мощности, вырабатывающие пар для собственных нужд котельной (разогрева мазута, деаэрации питательной воды и др.).

В мелких с-мах ТС при использовании однотипных стальных или чугунных водогрейных котлов находит применение схема, показанная на рис. 11.4. Особенностью ее является то, что подача воды на отопление и горячее ВС производится раздельно по четырехтрубной с-ме. Для подогрева воды на горячее ВС применяется теплообменник, греющая вода для которого отбирается из подающей магистрали через регулятор температуры типа PT, поддерживающий постоянной темп-ру подаваемой на горячее ВС воды (60 – 65°С). При этом расчетная темп-ра подаваемой на отопление воды может составлять от 95 – 115°С для чугунных котлов до 150 – 180°С для стальных.

Рис. 12.4. Принципиальная схема котельной с водогрейными котлами при четырехтрубной системе теплоснабжения:

1 – котлы; 2 – регулятор температуры; 3 – теплообменник; 4 – перемычка из обратной линии в подающую; 5 – регулирующий клапан; 6 – сетевой насос; 7 – аппараты химводоочистки; 8 – подпиточный насос; 9 – регулятор подпитки; 10 – насос.

Паровые котельные оборудуются только паровыми котлами и применяются в основном для выработки пара на технологические нужды, а в отдельных случаях при отсутствии водогрейных котлов требуемых типоразмеров и небольших жилищно-коммунальных нагрузках – для выработки горячей воды для с-м ТС.

Паровые котлы также выполняются стальными и чугунными. Стальные паровые котлы выпускаются в настоящее время промышленностью на паропроизводительность 1 – 75 т/ч и рабочее давление пара 0,9; 1,4; 2,4 и 4 МПа. Одновременно для паро- и ТС применяются котлы с давлением пара 1,4 МПа. Чугунные паровые котлы имеют меньшую паропроизводительность и рабочее давление пара до 0,17 МПа и применяются для пароснабжения мелких потребителей.

Принципиальная схема котельной со стальными паровыми котлами, отпускающей пар на технологические нужды и горячую воду на ТС, показана на рис. 11.5.

Вырабатываемый в котлах 1 пар по паропроводам направляется к технологическим потребителям и в пароводяной теплообменник 4 для подогрева воды, циркулирующей в с-ме ТС. Конденсат от технологических потребителей и после пароводяного теплообменника поступает в деаэратор 9, для работы которого используется редуцированный пар от котлов. Для восполнения потерь конденсата в деаэратор с помощью подпиточного насоса 12 подается также подпиточная вода после химводоочистки 11. Из деаэратора вода подается питательным насосом 10 в котлы.

Циркуляция воды в с-ме ТС осуществляется с помощью сетевых насосов 6. Отпуск теплоты на ТС регулируется путем изменения расхода пара с помощью регуляторов 3 в соответствии с требуемым темп-рным графиком. Подпитка воды в тепловую сеть производится подпиточным насосом 12 после химводоочистки 11 на всасывание сетевого насоса.

Рис. 11.5. Принципиальная схема котельной с паровыми котлами, отпускающими пар и горячую воду

1 – котлы; 2 – РОУ, 3 – регулирующий клапан, 4 – пароводяной теплообменник, 5 – конденсатоотводчик, 6 – сетевой насос, 7 – фильтр, 8 – регулятор подпитки, 9 – деаэратор, 10 – питательный насос, 11 – аппараты химводоочистки, 12 – подпиточный насос

Пароводогрейные котельные, называемые также смешанными, оборудуются указанными выше типами паровых и водогрейных котлов или комбинированными пароводогрейными котлами (например, типа KTK) и предназначаются для выработки пара на технологические нужды и горячей воды для обеспечения нагрузок отопления, вентиляции и горячего ВС.

Мощность и число паровых и водогрейных или пароводогрейных котлов определяются значениями нагрузок по горячей воде и паровой нагрузки с учетом собственных нужд котельной. Схема пароводогрейной котельной состоит из двух контуров: 1) для выработки пара и 2) для выработки горячей воды.

Мощность котельных выбирается по расчетной максимальной тепловой нагрузке потребителей. При этом типоразмеры установленных котлоагрегатов должны быть такими, чтобы при выходе из строя наибольшего по производительности котла оставшиеся котлы обеспечивали максимальный отпуск теплоты технологическим потребителям и требуемое для наиболее холодного месяца среднее количество теплоты для нагрузок ЖКС.

Принципиальная тепловая схема котельной с паровыми котлами

Принципиальная тепловая схема (ПТС) котельной с паровыми котлами для потребителей пара и горячей воды показана на рис. 8.

Паровые котельные чаще всего предназначены для одновременного отпуска пара и горячей воды, поэтому в их тепловых схемах имеются установки для подогрева горячей воды.

Обычно устанавливаются паровые котлы низкого давления 14 ата, но не выше 24 ата.

Читать еще:  Требования к пожарным наружным лестницам: чертеж и гост р 53254 2009

Сырая вода поступает из водопровода с напором в 30–40 м. вод. ст. Если напор сырой воды недостаточен, предусматривают установку насосов сырой воды 5.

Сырая вода подогревается в охладителе непрерывной продувки паровых котлов 11 и в пароводяном подогревателе сырой воды 12 до температуры 20-30 ºС. Далее вода проходит через водоподготовительную установку (ВПУ), и часть ее направляется в подогреватель химически очищенной воды 13, часть проходит через охладитель выпара деаэратора 4 и поступает в деаэратор питательной воды (ДПВ) 2. В этот деаэратор направлены также потоки конденсата и пар после редукционно-охладительной установки (РОУ) 17 с давлением 1,5 ата для подогрева деаэрируемой воды до 104 0 С. Деаэрированная вода при помощи питательного насоса (ПН) 6 подается в водяные экономайзеры котла и к охладителю РОУ. Часть выработанного котлами пара редуцируется в РОУ и расходуется для подогрева сырой воды и деаэрации.

Рис. 8. Принципиальная тепловая схема котельной с паровыми котлами

1– котел паровой, 2 – деаэратор питательной воды (ДПВ), 3 – деаэратор подпиточной воды, 4 – охладитель выпара, 5 – насос сырой воды, 6 – насос питательный (ПН), 7 – насос подпиточный, 8 – насос сетевой (СН), 9 – насос конденсатный (КН), 10 – бак конденсатный, 11 – охладитель продувочной воды (ОПВ), 12 – подогреватель сырой воды, 13 – подогреватель хим. очищенной воды (ПХОВ), 14 – охладитель подпиточной воды, 15 – охладитель конденсата, 16 – подогреватель сетевой воды, 17 – редукционно-охладительная установка (РОУ), 18 – сепаратор непрерывной продувки, 19 – продувочный колодец, ВПУ – водоподготовительная установка.

Вторая часть потока хим. очищенной воды подогревается в подогревателе 14, частично в охладителе выпара 4 и направляется в деаэратор подпиточной воды для тепловых сетей 3. Вода после этого деаэратора проходит водо-водяной теплообменник 14 и подогревает хим. очищенную воду. Подпиточным насосом 7 вода подается в трубопровод перед сетевыми насосами 8, которые прокачивают сетевую воду сначала через охладитель конденсата 15 и затем через подогреватель сетевой воды 16, откуда вода идет в тепловую сеть.

Деаэратор подпиточной воды 3 также использует пар низкого давления после РОУ. При закрытой системе теплоснабжения расход воды на подпитку тепловых сетей обычно незначителен. В этом случае довольно часто не выделяют отдельного деаэратора для подготовки подпиточной воды тепловых сетей, а используют деаэратор питательной воды паровых котлов.

На приведенной схеме предусматривается использование теплоты непрерывной продувки паровых котлов. Для этой цели устанавливают сепаратор непрерывной продувки 18, в котором вода частично испаряется за счет снижения ее давления от 14 до 1,5 ата. Образующийся пар отводится в паровое пространство деаэратора, горячая вода направляется в водо-водяной теплообменник сырой воды 11. Охлажденная продувочная вода сбрасывается в продувочный колодец.

Непрерывная продувка обеспечивает равномерное удаление из котла накопившихся растворенных солей и осуществляется из места наибольшей их концентрации в верхнем барабане котла. Периодическая продувка применяется для удаления шлама, осевшего в элементах котла, и производится из нижних барабанов и коллекторов котла через каждые 12-16 часов. Иногда предусматривают подачу продувочной воды для подпитки закрытых тепловых сетей. Подпитка тепловых сетей продувочной водой допускается только в том случае, когда общая жесткость сетевой воды не превышает 0,05 мг-экв/кг.

ПТС котельной для открытых систем теплоснабжения отличается от приведенной только установкой дополнительного деаэратора для деаэрации подпиточной воды тепловых сетей и установкой баков-аккумуляторов.

Конденсат от пароводяных подогревателей под давлением греющего пара во всех случаях следует направлять в ДПВ, минуя конденсатные баки 10 и насосы 9. При открытых системах теплоснабжения для деаэрации подпиточной воды устанавливают, как правило, атмосферные деаэраторы. Использование продувочной воды котлов в качестве подпиточной для открытых систем не допускается. Температура питательной воды после деаэратора 104 °С. Температура возвращаемого с производства конденсата 80–95 °С.

Принципиальная тепловая схема котельной с водогрейными котлами для закрытых систем теплоснабжения

ПТС котельных с водогрейными котлами для закрытых систем теплоснабжения показана на рис. 9.

Вода из обратной линии тепловых сетей с небольшим напором 20–40 м. вод. ст. поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки волы в тепловых сетях. К насосу 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева хим. очищенной воды 8 и сырой воды 7.

Для обеспечения температуры воды на входе в котел, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Вода подается рециркуляционным насосом 3.

При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после насосов 2, минуя котлы, подают по линии перепуска в количестве Gпер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей.

Добавка хим. очищенной воды подогревается в теплообменниках 9, 8, 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии теплосети. Только при расчетном максимально зимнем режиме температура воды на выходе из котлов и в подающей линии будет одинаковой.

Для закрытых систем даже в мощных водогрейных котельных можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов 5 и оборудование ВПУ, снижаются требования к качеству подпиточной воды по сравнению с открытыми системами.

Недостаток закрытых систем – некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества проходящей через них воды. Расход воды должен быть постоянным, независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществить путем изменения температуры воды на выходе их котлов Gпер.

Для уменьшения интенсивности наружной коррозии трубных поверхностей стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов.

Минимальная допустимая температура на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60 °С; при работе на малосернистом мазуте – не ниже 70 °С; при работе на высокосернистом мазуте – не ниже 110°С. Так как температура обратной сетевой воды почти всегда ниже 60 °С в тепловых схемах предусматривается линия рециркуляции.

Читать еще:  Как избавиться от конденсата на балконе: как правильно сделать вентиляцию своими руками

Для определения температуры воды в тепловых сетях для различных расчетных температур наружного воздуха строятся графики, разработанные теплоэлектропроектом. Например, из такого графика видно, что при температурах наружного воздуха +3 ºС и выше вплоть до конца отопительного сезона температура прямой сетевой воды постоянна и равна 70 0 С.

Среднечасовой расход в сутки теплоты на горячее водоснабжение обычно составляет 20% общей теплопроизводительности котельной:

3 % – потери наружных тепловых сетей;

3 % – расходы на собственные нужды от установленной теплопроизводительности котельной;

0,25 % – утечка из тепловых сетей закрытых систем;

0,25 % – объем воды в трубах тепловых сетей.

Рис. 9. Принципиальная тепловая схема котельной с водогрейными котлами для закрытой системы теплоснабжения

1 – котел водогрейный, 2 – насос сетевой (СН), 3 – насос рециркуляции, 4 – насос сырой воды (НСВ), 5 – насос подпиточной воды, 6 – бак подпиточной воды, 7 – подогреватель сырой воды, 8 – подогреватель хим. очищенной воды (ПХОВ), 9 – охладитель подпиточной воды, 10 – деаэратор, 11 – охладитель выпара, 12 – водоподготовительная установка (ВПУ).

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Подсказка в 5 шагов: схема котельной

Если котельная сконструирована верно, то она будет обслуживать и системы отопления, и вентиляцию, и снабжение горячей и холодной водой. Самостоятельно, можно сказать, никто не проектирует коммуникации. Ориентируются хотя бы на типовой план. Зависит его выбор от типа помещения, к которому он и предусмотрен.

Что такое принципиальная схема котельной

В графическом чертеже должны быть отражены все механизмы, аппараты, приборы, а также трубы их соединяющие. В стандартных схемах котельной включены и котлы, и насосы (циркуляционные, подпиточные, рециркуляционные, сетевые), и аккумуляторные, и конденсационные баки. Также предусматриваются устройства подачи топлива, его сжигания, а еще аппараты для деаэрации воды, теплообменников, тех же вентиляторов, тепловых щитов, пультов управления.

На то, каким будет оборудование и где его расположить, влияет вид теплоносителя, а еще тепловые коммуникации и, что важно, качество воды.

Те тепловые сети, что работают на воде, делятся на две группы:

  • Открытые (жидкость при этом отбирается в местных установках);
  • Закрытые (вода возвращается в котел, отдав теплоту).

Самый популярен образец принципиальной схемы – это пример водогрейной котельной открытого типа. Принцип в том, что циркулярный насос установлен на обратной линии, он отвечает за доставку воды в котел, и потом по всей системе. Подающую и обратную линии соединят два типа перемычек – перепускная и рециркуляционная.

Технологическая схема может быть взята из любых достоверных источников, но хорошо бы обсудить ее со специалистов. Он проконсультирует вас, подскажет, подходит ли она в вашей ситуации, объяснит всю систему действия. В любом случае, это важнейшая конструкция для частного дома, потому внимание должно быть максимальным.

Схемы открытого и закрытого типа могут быть использованы при монтаже парового отопления. Более подробно об этом читайте в нашем следующем материале: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/kanalizatsiya/parovoe-otoplenie

Как использовать тепловую схему котельной

Тепловая схема помогает следить за состоянием и функционированием котельной. Из-за дымовых газов не исключено появление коррозии металлических покрытий низкотемпературных или сернокислых. И чтобы она не появилась, следует осуществлять контроль температуры воды. Примечательно, что во входе в котел оптимальной температурой будет 60-70 градусов.

А чтобы была возможность повысить температуру до нужных показателей, устанавливается рециркулярный насос. За водогрейными котлами нужно следить, чтобы их срок службы был приличным, контролируйте постоянство расхода воды. Обычно минимальные данные этого показателя устанавливает производитель.

Чтобы котельные работали хорошо, нужно использовать вакуум-деаэраторы. Обычно водоструйный эжектор создаст вакуум, а для деаэрации используется выделяемый пар. Но, главное, чего боятся при установке котельной, это постоянной привязки к месту. Современная автоматизация многие процессы упрощает.

Автоматика и схема котельной установки

Автоматика дает возможность воспользоваться набором программ, управляющих тепловыми потоками. Зависит это и от режима дня, от погоды. В том числе, нужно это и для обогревания дополнительных помещений: игровой комнаты, бассейна.

Есть какие-то популярные пользовательские функции, которые адаптируют работу оборудования с оглядкой на образ жизни хозяев дома. Это и обычная система снабжения горячей водой, и комплекс каких-то индивидуальных опций, которые удобны именно этим жильцам, экономичны. Точно так же можно разработать схему автоматизации котельной, выбрав один из популярных режимов.

Одним из компонентов, используемых в автоматизации котельной является сигнализаторы загазованности. О том, как они устроены и как работают, читайте в нашей статье: https://homeli.ru/komnaty/kukhnya/signalizator-zagazovannosti

Подбор подпиточного насоса для котельной

Насос подпитки должен развить высокое давление большее, нежели в контуре системы отопления при сравнительно небольшой подаче. Все-таки для подпитки не нужна перекачка больших объемов жидкости. Подбор такого насоса осуществляется по нескольким требованиям.

Подбор подпиточного насоса:

  • Он должен создавать напор, что превысит давление в обратке СО;
  • Также напор должен мочь продавить гидравлическое сопротивление датчика давления, трубопровода;
  • Еще важным критерием является расход, в частности, для закрытых СО нормы утечки равняются половину процента от объема теплоносителя в котловом и отопительном контуре.

В то же время хочется сказать, что не очень-то практично для работы приобретать такой насос. В том смысле, что он не должен служить только для подпитки. Он может выполнять и дополнительные функции, например, быть резервным циркуляционным насосом, а также использоваться для закачки и слива воды в контур.

Какая схема котельной (видео)

Если задумали строить котельную, не лишним будет, конечно, заглянуть в учебник, вспомнить, что такое тепломеханическая система и т.д. Но можно посмотреть предложенные готовые схему, обсудить их со специалистами, и выбрать подходящую с учетом всех современных возможностей.

Ссылка на основную публикацию